当前位置:网站首页>项目场景 with ERRTYPE = cudaError CUDA failure 999 unknown error
项目场景 with ERRTYPE = cudaError CUDA failure 999 unknown error
2022-08-02 02:20:00 【mtl1994】
项目场景 [with ERRTYPE = cudaError; bool THRW = true] CUDA failure 999: unknown error ; GPU=24 :
需要升级之前老的程序,之前的cuda 是10.2
问题描述:
环境
cuda 11.2 (之前是10.2)
onnxruntime-gpu 1.10
python 3.9.7
启动程序的时候
Traceback (most recent call last):
File "/home/aiuser/cover/liheng-foggun/app.py", line 15, in <module>
model = DetectMultiBackend(weights=config.paddle.model_file)
File "/home/aiuser/miniconda3/envs/cover/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 28, in decorate_context
return func(*args, **kwargs)
File "/home/aiuser/cover/liheng-foggun/models/yolo.py", line 37, in __init__
self.session = onnxruntime.InferenceSession(weights, providers=['CUDAExecutionProvider'])
File "/home/aiuser/miniconda3/envs/cover/lib/python3.9/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py", line 335, in __init__
self._create_inference_session(providers, provider_options, disabled_optimizers)
File "/home/aiuser/miniconda3/envs/cover/lib/python3.9/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py", line 379, in _create_inference_session
sess.initialize_session(providers, provider_options, disabled_optimizers)
RuntimeError: /onnxruntime_src/onnxruntime/core/providers/cuda/cuda_call.cc:122 bool onnxruntime::CudaCall(ERRTYPE, const char*, const char*, ERRTYPE, const char*) [with ERRTYPE =
cudaError; bool THRW = true] /onnxruntime_src/onnxruntime/core/providers/cuda/cuda_call.cc:116 bool onnxruntime::CudaCall(ERRTYPE, const char*, const char*
, ERRTYPE, const char*) [with ERRTYPE = cudaError; bool THRW = true] CUDA failure 999: unknown error ; GPU=24 ; hostname=aiserver-sl-01 ; expr=cudaSetDevice(info_.device_id);
原因分析:
1.刚开始以为是onnxruntime-gpu 版本问题 升级到了 1.12 还是报错
2.网上又说是不兼容的问题
3.试试重装下驱动,卸载了11.2 的时候 通过nvidia-smi 发现之前10.2的驱动还存在
4.是因为之前的驱动没有卸载干净
解决方案:
1.卸载10.2
sudo /usr/local/cuda-10.2/bin/cuda-uninstaller
2.安装新驱动
#离线安装 515.57
sudo ./NVIDIA-Linux-x86_64-515.57.run -no-x-check -no-nouveau-check
VIDIA-Linux-x86_64-515.57.run -no-x-check -no-nouveau-check
边栏推荐
- Nanoprobes免疫测定丨FluoroNanogold试剂免疫染色方案
- openGauss切换后state状态显示不对
- swift项目,sqlcipher3 -&gt; 4,无法打开旧版数据库有办法解决吗
- 2022-08-01 反思
- LeetCode刷题日记:74. 搜索二维矩阵
- How to adjust the cross cursor too small, CAD dream drawing calculation skills
- 【web】Understanding Cookie and Session Mechanism
- [ORB_SLAM2] void Frame::ComputeImageBounds(const cv::Mat & imLeft)
- bool框架::PosInGrid (const简历:关键点kp, int &posX, int诗句)
- Golang分布式应用之定时任务
猜你喜欢
FOFAHUB usage test
拼多多借力消博会推动国内农产品品牌升级 看齐国际精品农货
The state status is displayed incorrectly after the openGauss switch
Remember a gorm transaction and debug to solve mysql deadlock
How engineers treat open source
2023年起,这些地区软考成绩低于45分也能拿证
How to adjust the cross cursor too small, CAD dream drawing calculation skills
AI target segmentation capability for fast video cutout without green screen
AWR分析报告问题求助:SQL如何可以从哪几个方面优化?
2022-08-01 mysql/stoonedb slow SQL-Q18 analysis
随机推荐
【Unity入门计划】2D Game Kit:初步了解2D游戏组成
oracle query scan full table and walk index
The underlying data structure of Redis
力扣(LeetCode)213. 打家劫舍 II(2022.08.01)
Use baidu EasyDL implement factory workers smoking behavior recognition
AI目标分割能力,无需绿幕即可实现快速视频抠图
使用docker安装mysql
Centos7 安装postgresql并开启远程访问
Oracle19c安装图文教程
ofstream,ifstream,fstream read and write files
JVM调优实战
Simple example of libcurl accessing url saved as file
Pinduoduo leverages the consumer expo to promote the upgrading of domestic agricultural products brands and keep pace with international high-quality agricultural products
用位运算为你的程序加速
Analysis of the status quo of digital transformation of manufacturing enterprises
MySQL8 download, start, configure, verify
AWR分析报告问题求助:SQL如何可以从哪几个方面优化?
2022年NPDP考完多久出成绩?怎么查询?
Hash collisions and consistent hashing
Redis for distributed applications in Golang